Как работает солнечная батарея в пасмурную погоду

Как работают солнечные батареи зимой

как работает солнечная батарея в пасмурную погоду

Солнечные батареи – это модуль со специальными фотоэлементами, при помощи которых происходит захват солнечного света и преобразование его в энергию.

Срок службы солнечных панелей может достигать 50 лет, в результате чего вы сможете самостоятельно обеспечивать свой дом электроэнергией. Однако главный принцип работы панелей – это генерация тока под действием солнца.

Что делать в зимнее время года? Как работает солнечная станция зимой и возможно ли получать достаточное количество электроэнергии?

Насколько эффективно использование солнечных батарей зимой

Солнечные батареи работают только при попадании на них солнечного света. В связи с тем, что продолжительность светового дня зимой сокращается и количество пасмурных дней больше, то панели уже не могут вырабатывать одинаковое количество энергии. В зависимости от региона продуктивность солнечных батарей может падать до 5 раз. Чем южнее находится ваше местоположение, тем менее ощутимой будет разница в количестве получаемой электроэнергии.

Например, в восточной и южной частях эффективность работы солнечной системы снижается в 1,5-2 раза, а в северных регионах может падать до 8 раз.

Для большего понимания возьмем стандартный набор электроприборов, которыми мы пользуемся изо дня в день – телевизор, холодильник, компьютер, две-три лампы. Летом на обеспечение этих потребностей требуется не более 1кВт электричества. Если посчитать, то это 4 батареи по 250 Вт.

Для такой же задачи зимой потребуется либо увеличить количество панелей на 2 штуки или купить изначально более мощные, которые будут вырабатывать минимум 2 кВт. И то данное условие соблюдается только в случае соблюдения всех правил использования солнечной системы – она должна быть очищена от снега, грязи, пыли и соблюден угол наклона батарей.

Если модули зимой засыпаны снегом, то электроэнергию они и вовсе не будут генерировать.

Принцип работы панелей

То, что солнечным батареям необходим для работы солнечный свет, это так, но вот многие ошибаются и считают, что летом они производят больше тока, чем в зимний день.

Смысл эффективности батарей заключается в захватывании и преобразовании солнечного света, и какая температура на улице неважно. Наоборот, если они сильно перегреваются при высоких температурах свыше 25 градусов, то КПД снижается.

Поэтому яркий солнечный день с низкой температурой – это идеальные условия для работы панелей, как раз-таки зимой.

Сразу хочется отметить, что в пасмурные дни, если через тучи проникают солнечные лучи, батареи тоже работают, однако эффективность их будет в разы меньше.

Такие случаи, что система на протяжении всего дня вовсе не вырабатывает ток, встречаются крайне редко.

Следует только учесть такой немаловажный фактор: зимой солнце всегда низко, а значит, лучи не попадают на панели перпендикулярно и преодолевают толщу атмосферного слоя, из-за чего много энергии рассеивается, в результате чего снова падает КПД.

Работа системы в зимнее время

В зимнее время солнечная система требует соблюдения определенных правил, которые смогут сохранить показатель эффективности на должном уровне. Итак, что нужно делать?

Зачем солнечной батарее нужен запас по напряжению

Аккумулятор является обязательной частью солнечной станции. В его функцию входит накапливание и сохранение выработанной энергии в течение дня или нескольких дней с целью использования ее в ночное время суток, в пасмурную погоду, в результате внутреннего сопротивления солнечного элемента. Запас по напряжению также требуется для обеспечения неснижаемого уровня зарядки аккумулятора – не менее 14,4В – и исключает риск просадки напряжения, когда модуль выдает максимальную мощность.

Еще один момент, который может создать проблемы в работе солнечной системы – это ток короткого замыкания.

Этот процесс связан с ростом освещенности, особенно в пасмурную погоду или в зимнее время, а в результате отсутствия запаса напряжения это может привести к снижению мощности батареи и ухудшению качественных показателей аккумулятора, а в зимнее время как раз-таки риск подобной ситуации возникает наиболее часто.

Чтобы обезопасить аккумулятор от полного разряда, необходимо подключить полупроводниковый диод с односторонней проводимостью. Он выполняет функцию проведения тока только в одном направлении – от солнечной батареи к аккумулирующему устройству.

Работа солнечных панелей зимой

Выбор контроллера

Чтобы в периоды слабой солнечной радиации использовать накопленную энергию, понадобится не только аккумулятор, но и контроллер. К качественным современным контролерам можно отнести 2 вида:

  • PWM – с широтно-импульсной модуляцией.
  • MPPT – со слежением за точкой максимальной мощности.

Контроллер – это электронный модуль, в функции которого входит целый ряд процессов, контролирующих заряд/разряд аккумулятора солнечной батареи.

Первый вариант более простой и доступный. Это связано с его отдельными недоработками в системе, он недоиспользует излишнее напряжение, например, когда высокий показатель мощности у батареи и хорошее солнечное освещение.

А вот второй вариант – MPPT контроллер – способен снизить излишнее напряжение даже при значительном повышении тока, сохраняя при этом мощность панели. То есть он выступает балансирующим звеном между батареей и аккумулятором. Он обеспечивает оптимальную нагрузку и тем самым исключает риски выхода системы из строя.

С его помощью есть возможность получить максимальную мощность от панелей при ярком освещении, но в дни с низким показателем солнечной радиации преимущества MPPT-контроллера не реализуются.

Смена угла наклона в зависимости от сезона

Для того чтобы поддерживать максимальную эффективность в работе солнечных батарей, необходимо менять их угол наклона в зависимости от времени года – зимой он меньше, и лучи солнца уже не попадают на поверхность модулей перпендикулярно. Некоторые используют универсальные расчеты угла наклона на целый год (среднее значение между летом и зимой). При таком положении достигнуть наивысших показателей не получается, но можно поддержать необходимый объем выработки электроэнергии.

Если вы стараетесь следовать правилам и менять угол наклона, тогда с приходом зимы модули следует установить с углом 10-15 градусов. В районах с сильными снегопадами некоторым приходится устанавливать панели и вовсе вертикально, так как снег налипает на панели и не дает проникнуть солнечным лучам для генерации энергии.

Независимо от того, часто выпадает снег или нет, вы должны постоянно следить за чистотой поверхности модулей, а вот вблизи расположения солнечных батарей его можно не счищать. Наоборот, снег будет охлаждать модули и тем самым не давать падать эффективности.

Кроме того, окружающий панели снег обладает отражающим свойством, в результате чего модулями захватывается больше света и увеличивается производительность.

Какие солнечные батареи лучше работают зимой

Если оценить показатели панелей в разное время года, то лучше всего проявляют себя поликристаллические. Они способны выдавать большую эффективность при рассеянном свете и в пасмурную погоду, когда лучи пробираются сквозь облака.

Это связано с их особым строением, а именно: кристаллы кремния ориентированы хаотично, то есть они, наоборот, в летние солнечные дни выдают на 2-3% эффективности меньше, а в зимнее время или пасмурную погоду больше, чем монокристаллические.

Так же важно подобрать правильные крепления для солнечных панелей, которые позволят выбрать правильный угол наклона.

Идеальным вариантом панелей в любое время года являются модули, которые могут перерабатывать как инфракрасное излучение, так и ультрафиолетовое. Это отдельное перспективное направление в сфере солнечных батарей, которое пока еще не поставлено на конвейер и не доступно в массовом потреблении. Однако с каждым днем ведется работа, которая позволит в ближайшее время запустить в продажу такие виды модулей и получать высокий КПД даже в зимнее время.

Источник: https://www.termico-solar.com/solnechnye-batarei-zimoj/

Облачность и препятствия

как работает солнечная батарея в пасмурную погоду
Только малая доля солнечного излучения достигает поверхности земли
1.прямая  2.поглощение  

3.отражение  4.непрямая

Солнечный свет проходит свой путь от Солнца до Земли по прямой линии. Когда он достигает атмосферы, часть свет а преломляется, а часть достигает земли по прямой линии. Другая часть света поглощается атмосферой. Преломлённый свет — это то, что обычно называется диффузной радиацией, или рассеянным светом. Та часть солнечного света, которая достигает поверхности земли без рассеяния или поглощения — это прямая радиация. Прямая радиация — наиболее интенсивная.

Солнечные модули производят электричество даже когда нет прямого солнечного света. Поэтому, даже при облачной погоде фотоэлектрическая система будет производить электричество. Однако, наилучшие условия для генерации электроэнергии будут при ярком солнце и при ориентации панелей перпендикулярно солнечному свету. Для местностей северного полушария панели должны быть ориентированы на юг, для стран южного полушария — на север.

Влияние различных световых условий на выработку фотоэлектрических модулей (в % от полной мощности)

Яркое солнце — панели расположены перпендикулярно солнечным лучам 100%
Легкая облачность 60-80%
Пасмурная погода 20-30%
За оконным стеклом, один слой, стекло и модуль перпендикулярны солнечным лучам 91%
За оконным стеклом, 2 слоя, стекло и модуль перпендикулярны солнечным лучам 84%
За оконным стеклом, один слой, стекло и модуль под углом 45° солнечным лучам 64%
Искусственный свет в офисе, на поверхности письменного стола 0.4%
Искусственный свет внутри яркого помещения (например, магазин) 1.3%
Искусственный свет внутри жилого помещения 0.2%

Солнечные батареи в пасмурную погоду работают далеко не так хорошо, как в солнечную. Вырабатываемое солнечным элементом напряжение зависит от падающего на него светового потока, а именно: напряжение с ростом освещенности возрастает лишь до определенного предела, а дальше уже не растет.

Для кремниевого элемента это напряжение составляет 0,6 В, и для повышения напряжения солнечной батареи (панели) элементы соединяют последовательно.

Так, для заряда автомобильного аккумулятора номинальным напряжением 12 В необходима батарея из соединенных последовательно 36 элементов с общим напряжением холостого хода 36 х 0,6 = 21,6 (В).

Зачем солнечной батарее нужен запас по напряжению? Запас по напряжению обеспечивает заряд аккумулятора при падении светового потока в пасмурную погоду или заходе солнца за облака и вследствие наличия у солнечного элемента внутреннего сопротивления, снижающего напряжение на выходе при подключении нагрузки, а также для обеспечения зарядки аккумулятора до требуемых 14,4 В. Кроме того, элемент выдает максимальную мощность при нагрузке, обеспечивающей просадку напряжения до 0,47-0,5 В, и при оптимальной нагрузке батарея из 36 элементов выдает напряжение 17-18 В.

Следует учитывать также, что солнечные элементы имеют нижний предел чувствительности по освещению, ниже которого он вообще перестает вырабатывать энергию. Для кремниевых кристаллических солнечных модулей этот предел — примерно 150-200 Вт/м2. Для тонкопленочных модулей он немного ниже — в пределах 100-200 Вт/м2. Поэтому считается, что тонкопленочные солнечные панели работают в пасмурную погоду лучше, чем кристаллические.

Эффект такой действительно наблюдается. Но при принятии решения о выборе типа солнечной батареи для вашего дома нужно понимать, что энергии солнечных лучей в пасмурную погоду очень мало.

Номинальную мощность солнечные батареи вырабатывают при освещенности 1000Вт/м2 и температуре панелей 25С.  Более того, КПД солнечных элементов при низкой освещенности падает (см. ВАХ солнечного элемента при различной освещенности).

Поэтому разница пороговой освещённости в 50-100 Вт/м2  мало повлияет на общую выработку электроэнергии солнечной батареи.

Какие солнечные модули работают лучше при пониженной освещенности и рассеянном свете?

В спецификациях на солнечные модули указаны параметры при STC (стандартных тестовых условиях). Реальные условия эксплуатации могут значительно отличаться от STC.  Обычно солнечные батареи в России работают при освещенности ниже, чем 1000 Вт/м² и погода бывает облачная или даже пасмурная. Солнечные модули разных типов и даже одного типа, но разных производителей работают по-разному в реальных условиях эксплуатации. 

Поэтому возникает вопрос — какие солнечные модули лучше купить, чтобы они работали наиболее эффективно при облачной погоде и рассеянном свете? Основным параметром, который нам важен при оценке эффективности солнечных батарей, является количество вырабатываемой энергии за промежуток времени (сутки, неделю, месяц, год).  Какие же модули вырабатывают больше энергии при малой освещенности? Рассмотрим основные типы модулей — монокристаллические, поликристаллические, тонкопленочные аморфные кремниевые, монокристаллические PERC модули — это основные модули, представленные сейчас на российском рынке.

Часто задают вопрос — какие модули работают лучше при облачной погоде и рассеянном свете? При пониженной освещённости и частичном затенении лучше работают тонкопленочные модули. Также, лучше чем обычные моно и поликристаллические модули при пониженной освещённости работают модули, изготовленные по технологии PERC (у нас в ассортименте есть такие модули).

Для стандартных модуле точно сказать, какой модуль — монокристаллический или поликристаллический — будет больше вырабатывать в облачную погоду нельзя. Тут все зависит от качества производителя. Только брендовые модули будут гарантировать максимальную выработку при различных условиях работы.

Обязательно смотрите, присутствует ли производитель или бренд в списке модулей, которые прошли тестирование независимой лаборатории на параметра PCT

Дешевые модули делаются со стеклом без антибликового покрытия (один из популярных в России поставщиков продает именно такие модули). Они выдают заявленные параметры при тестировании на заводе, когда модули облучаются под прямым углом к плоскости.

Но как только угол падения солнечных лучей становится не перпендикулярным поверхности элемента, значительная часть солнечного света отражается некачественным стеклом.  Также, очень плохо такие модули работают и на рассеянном свете.

В итоге выработка энергии таким модулем может быть меньше раза в 2 по сравнению с выработкой энергии модулем такой же номинальной мощности, но сделанным известным брендом и производителем, отвечающим за свое качество.

Поэтому повторим наш настоятельный совет, которые мы даем в нашем Руководстве покупателя солнечных батарей — не покупайте солнечные модули под брендом российского импортера! Вы сэкономите на покупке, но потеряете в выработке энергии (а это главный показатель качества солнечный батарей). В итоге стоимость электроэнергии от вашей солнечной батареи будет дороже, чем если бы вы купили качественную солнечную панель известного производителя.

Солнечные батареи за стеклом

Часто нас спрашивают, насколько снизится выработка солнечных батарей, если их установить за стеклом — внутри балкона, веранды и т.п. Многие дачники боятся, что установленную снаружи солнечную батарею украдут. Некоторые пытаются сделать установку солнечных батарей неприметной.

В солнечных панелях применяется специальное стекло с повышенной прозрачностью, которая достигается пониженным содержанием железа в стекле, но даже оно снижает мощность солнечной панели на несколько процентов. Как видно из таблицы выше, оконное стекло в один слой снижает выработку солнечной панели на 9%, а двойное стекло — на 16%.

Это при условии, что эти стекла — идеально чистые и солнечные лучи падают на них перпендикулярно.  В реальности же стекла бывают пыльными или даже грязными, что дополнительно снижает их прозрачность. При падении солнечных лучей под углом, отличным от 90 градусов, на передней и задней поверхности каждого стекла возникают переотражения, которые также отводят солнечные лучи от солнечного элемента.

  Поэтому мы не рекомендуем устанавливать солнечные батареи за оконными стеклами.

Солнечные батареи за стеклом на балконе

Эта статья прочитана 3981 раз(а)!

Продолжить чтение

  • Угол наклона и направление
  • Интересные ссылки по солнечным батареям
  • Как выбрать солнечную батарею и не пожалеть об этом?
  • Срок службы солнечных батарей
  • Путеводитель по теме «Солнечные батареи»

Источник: https://www.solarhome.ru/basics/solar/pv/techorient.htm

Мифы и реальность тонкопленочных солнечных батарей

как работает солнечная батарея в пасмурную погоду

Солнечные электростанции пока не используются повсеместно, на то есть ряд причин, описанных в этой статье (откроется в новом окне). Тонкопленочные солнечные батареи в ряду новейших технологий пока не стали модными и не используются повсеместно, т.к. имеют больше недостатков, чем достоинств, но рассмотрим обе стороны.

В чем разница

Принципиальная разница состоит в используемых материалах. Для достижения отличительных параметров тонкопленочных солнечных батарей нужно использовать полупроводники из селенида меди-индия, а также теллурида кадмия. Принцип действия точно такой же, как в поликристаллических и монокристаллических фотоэлементах с той разницей, что наносить указанные полупроводники можно на пленку. Пленка гнется и скручивается в отличие от классических солнечных панелей.

Достоинства

  1. Полупрозрачность. Классические (поликристаллические и монокристаллические) солнечные панели полностью непрозрачные. Аморфные тонкопленочные батареи могут быть выполнены таким образом, чтобы заменить окно в доме, пропуская часть света, а часть преобразовывая в электричество.
  2. Легкость.

    Батареи выполненные на пленке легче классических в несколько раз, что дает больше свободы в монтаже, упрощает операции с ними.

  3. Гибкость. Тонкопленочные батареи теоретически можно изгибать в любой плоскости без потери работоспособности.
  4. Ударопрочность.

    Пленка не разбивается от падения при монтаже, от града и остается работоспособной в самых экстремальных условиях.

Недостатки

  1. Низкий КПД. Если не рассматривать лабораторные образцы, а оценивать реальные показатели выпускаемых моделей, то на выходе получим КПД не выше 4%, что в три раза меньше такого же у поликристаллического фотоэлемента.

    Важно. При использовании полупрозрачных фотоэлементов коэффициент снижается до смешных 2% и от одного окна вы вряд ли сможете даже зарядить свой смартфон.

  2. Высокая стоимость. Если сравнивать с классическими солнечными батареями, то их цена за м.кв. сопоставима с такими же поликристаллическими моделями, но вот мощность будет в три раза ниже. Если же сравнивать панели одинаковой мощности, то картина получится такая (данные из Aliexpress.com):

    Сравнение цен пленочной и кремниевой солнечной панели

    Разница в цене – ровно в три раза, при одинаковой мощности

  3. Снижение производительности при нагреве. Если в поли/монокристаллических батареях эта цифра достигает 12% от номинальной мощности, то в гибких фотоэлементах она доходит до 30-40%.

Мифы и реальность

Пока технология изготовления пленочных солнечных батарей не составляет реальной конкуренции поли/монокристаллическим аналогам. Прежде всего из-за дороговизны используемых материалов. Тем не менее, на ТВ, в сети и среди розничных продавцов бытует несколько  мифов о чудо свойствах этой технологии.

  • Тонкопленочные солнечные батареи могут работать в пасмурную погоду. Отчасти это правда, но правда и в том, что любые солнечные панели работают в пасмурную погоду, выдавая при этом меньшую силу тока или вольтаж, в зависимости от модели. Пленочные так же точно снижают свою производительность.
  • Пленочные батареи не снижают производительность при нагреве. Это откровенное вранье. Снижение производительности гораздо сильнее поли/монокристаллических аналогов. Поэтому при монтаже таких панелей следует обязательно предусмотреть возможность вентиляции их задних стенок.
  • Дешевле. На самом деле дороже (см. недостаток 2)
  • Могут принимать любую форму. Здесь правда, только вот толку, как показывает практика, от этого никакого. Панели располагаются в плоскости для достижения максимального эффекта.
  • Можно свернуть в трубочку и тогда свет будет поступать на них почти весь день. Действительно такое «сенсационное» изобретение приносит прирост в производительности меньше, чем использование той же площади аналогичных батарей в плоском виде.Схема работы цилиндрического модуля
  • Увеличенный срок службы. На самом деле нет. Срок службы пленочной панели – 10-12 лет, в то время как поликристаллические модели служат от 15 до 20 лет.
  • Можно использовать вместо стекол в окнах. При этом улицы вы видеть практически не будете, а эффективность такой полупрозрачной панели позволит вам в течении дня от одного окна зарядить один мобильный телефон. Сомнительное преимущество.
  • Экологичность. Т.к. в батареях применяются сплавы полупроводников из индия и кадмия, то кремния используется гораздо меньше. При этом продавцы уверяют, что кремний – это вещество по вредности между ураном и мышьяком, забывая, что 1/3 земной коры состоит из него.
  • Время окупаемости. Реклама пленочных батарей говорит, что они окупаются на 2-3 год эксплуатации. На самом деле нет. Срок службы пленочных солнечных батарей (10-12 лет) и их стоимость, не позволяет им окупиться вообще при нынешних ценах на электроэнергию.

Область применения

Как показывает практика, использовать гибкие солнечные панели целесообразно только в походных условиях. Гораздо проще развернуть холст с пленочными солнечными панелями на крыше палатки или трейлера, чем возить с собой жесткую конструкцию, на сборку которой нужно время. Популярны также переносные электростанции для зарядки телефонов и фонарей во время путешествия.

Ввиду низкого КПД сфера применения солнечных батарей очень ограничена. Применение в качестве стационарной солнечной электростанции возможно, но только при наличии больших свободных площадей. 

о пленочных батареях

Типичный рекламный сюжет, где диктор рассказывает чудеса о пленочных солнечных батареях, предполагая КПД в 10%, забывая, что таких результатов пока смогли добиться только в лабораторных условиях, но никак не в промышленных образцах. Ролик будет интересен тем, кто хочет знать, как реклама пытается обмануть нас.

Окупаются ли солнечные батареи для частного дома Виды контроллеров для солнечных батарей и как выбирать Ветряк для частного дома — игрушка или реальная альтернатива Выгодно ли покупать комплектом солнечные батареи для дачи

Все права защищены 2019

«Электрика в доме»

Источник: http://electricadom.com/realnoe-primenenie-tonkoplenochnykh-solnechnykh-batarejj.html

Солнечные панели в пасмурную погоду

Солнечные панели становятся все более популярными, благодаря целому ряду преимуществ. Если углубиться в вопрос о том, по какому принципу они работают, то можно получить следующую схему. В классическом исполнении устройства имеются 2 пластины из кремния. Одна покрыта фосфором, вторая – бором.

При попадании солнечного света на панель, электроны под воздействием лучей начинают двигаться, в результате чего образуется электрический ток. Панель покрыта медными жилами, по которым полученный ток проходит либо напрямую к электроприбору, либо в накопительный аккумулятор.

Конечно, это упрощенная схема работы, но по ней становится видно, что для работы солнечной батареи необходим свет.

А что если дождь?

Если для батарей необходим свет, то, как же ведут себя солнечные батареи в пасмурную погоду и вообще в дождь? На самом деле, дождь, как таковой, никак не сказывается на работе солнечных элементов и выработке электричества. Гораздо более важное влияние оказывают сопровождающие дождь пасмурность и облачность.

Именно тучи становятся серьезным препятствием для солнечных панелей, заметно снижая КПД, который и так порой желает оставлять лучшего. Если стоят поликристаллические или аморфные панели, то их КПД и так невысок, несколько лучше обстоят дела с монокристаллическими батареями.

Однако и они не способны нормально функционировать, если над установкой нависли тучи.

До недавнего времени такое явление едва ли не ставило «крест» на развитии солнечной энергетики. В то же время ученые не прекращали поиски решений, позволяющих устранить данную проблему. И такие решения нашлись, хотя и они не являются окончательными, так как панели постоянно совершенствуются во всех направлениях – и в увеличении КПД, и уменьшении занимаемой площади, и, в частности, усовершенствовании работы в непогоду.

Как улучшить работу солнечных батарей в плохую погоду

Первое, что может сделать рядовой потребитель – это понять, какие солнечные панели лучше в пасмурную погоду, и есть ли такие вообще. Сегодня можно утвердительно ответить на этот вопрос. Это так называемые графеновые батареи. Слой графена, которым покрыты панели, способен использовать капли дождя для дополнительной выработки электричества. То есть, даже при дождливой погоде КПД солнечной батареи не снизится слишком сильно, так как будет компенсация, благодаря дождю.

Второй способ – это приобрести более емкие накопительные аккумуляторы, чтобы в солнечную погоду запастись электроэнергией в большем объеме. При этом стоит позаботиться и о том, чтобы был подходящий для этого инвертор. Выбрать требуемый по характеристикам инвертор можно на сайте производителя, которым является компания Huawei.

Источник: http://huawei.energy/useful-know/solnechnye_paneli_v_pasmurnuyu_pogodu/

Солнечная батарея на балконе, опыт использования

Привет Geektimes. Данная статья является продолжением предыдущей части, про туристическое зарядное устройство «Anker Solar 21Вт».

Идея использования солнечной батареи для зарядки разных гаджетов мне показалась весьма перспективной, но конечно, 21Вт в качестве универсальной зарядки мало — хочется иметь возможность заряда не только в солнечную погоду, а для этого нужен запас по мощности.

Поэтому были куплены полноценные солнечные панели и начаты эксперименты с ними. Что из этого получилось, подробности под катом.

Железо

1. Солнечная панель Тут есть разные варианты, но на балконе основным ограничением является наличие свободного места. Для понимания порядка цен, батарея на 50Вт стоит примерно 5000руб и выглядит так: Размеры панели в мм — 540x620x30, вес 4кг.

Балконы по размеру бывают разные, исходя из габаритов панелей, вполне без проблем можно поместить 2 или 4 штуки, больше уже не влезет. Для теста было куплено 2 панели по 50Вт.

Такая батарея дает около 18В под нагрузкой или 24В без нее, значит при использовании 2х батарей нужно рассчитывать на суммарное напряжение до 50В (к примеру многие dc-dc преобразователи штатно работают до 30В). Можно соединить батареи и параллельно, но тогда потери из-за длины проводов будут чуть выше.

2. Контроллер

Здесь есть 2 варианта:

— Солнечные панели + контроллер + аккумулятор

Это классическая конструкция: контроллер заряжает аккумулятор когда есть солнце, пользователь когда ему надо, эту энергию использует. Преимуществ у данной системы несколько: — энергией можно пользоваться когда угодно, а не только когда светло, — возможность подключения инвертора и получения на выходе 220В, — как бонус, резервный источник в доме на случай отключения электричества.

Недостаток один: использование аккумулятора большой емкости в корне убивает экологичность идеи данного мероприятия. Число циклов заряда/разряда аккумуляторов ограничено, они не любят переразряд, к тому же и аккумуляторы и контроллеры довольно-таки дорогие.

Цена контроллера составляет от 1000р за самую дешевую ШИМ-версию, до 10000-20000р за более дорогую (и эффективную) версию с поддержкой MPPT (что такое MPPT можно почитать здесь).

Цена аккумулятора составляет от 5000р за обычный гелевый аккумулятор на 40-50А*ч, некоторые используют батареи LiFePo4, они разумеется дороже.

— Grid-tie инвертер

Эта технология наиболее перспективна на данный момент. Суть в том, что конвертор преобразует и отдает энергию сразу в домашнюю электросеть. При этом потребляемая от общей сети энергия уменьшается, домовой электросчетчик фиксирует меньшие показания. В идеале, если солнечные панели дают достаточно энергии для всех потребителей, значение на электросчетчике вообще не будет расти. А если потребление квартиры/дома меньше, чем выработка солнечных панелей, то счетчик будет фиксировать «экспорт» энергии, что должно учитываться компанией-поставщиком электричества. В России правда такая схема пока не работает — более того, большинство старых электросчетчиков считают энергию «по модулю», т.е. за отдаваемую энергию еще и придется платить. Вроде в 2017 году вопросы микрогенерации на законном уровне обещали начать решать. Но впрочем для панелей на балконе все это имеет лишь теоретический интерес — их выработка слишком мала. Цена grid-tie инвертора составляет от 100$, в зависимости от мощности. Отдельно стоит отметить микроинветоры — они ставятся прямо на батарею, и отдают сразу сетевое напряжение, однако рекомендуемая мощность панелей составляет не менее 200Вт. Инвертор крепится прямо на задней стенке солнечной панели, это позволяет соединять их так: Но для балкона это разумеется, неактуально.

Тестирование

Первым делом было интересно выяснить, какую реальную мощность можно получить с солнечных панелей. Для этого за 15$ была куплена плата АЦП ADS1115 для Raspberry Pi:
Использовать ее просто, входное напряжение делится делителем и подается на аналоговый вход, на выходе имеем цифровые значения. Исходники для работы с АЦП можно взять здесь.

Также был куплен датчик тока ACS712, датчик напряжения был сделан из кучки резисторов (дома нашлись только одного номинала). В качестве нагрузки была установлена обычная лампочка на 100Вт. Разумеется, от 48 вольт она не горела (лампочка расчитана на 220В), а лишь еле-еле светилась.

Сопротивление спирали составляет 42 Ома, что по напряжению позволяет примерно оценить мощность (хотя у лампы накаливания сопротивление нелинейно, но для грубой прикидки сойдет).

Первая тестовая версия выглядела так: Технофетишистам не смотреть!
Исходник был допилен, чтобы данные и текущее время сохранялись в CSV, также на Raspberry Pi был запущен web-сервер, чтобы скачивать файлы по локальной сети.

Результаты за обычный вполне ясный день с переменной облачностью выглядят так: Видно что пик напряжения приходится на раннее утро, что есть следствие неправильной установки панелей — в идеале они не должны стоять вертикально.

А вот так выглядит «провал» в день, когда набежали тучи, и пошел дождь: Учитывая напряжение в 44В и сопротивление нити накала лампы в 42Ома, можно грубо прикинуть (нелинейность сопротивления лампы игнорируем), что в лучшем случае получаемая мощность P = U*U/R = 46Вт. Увы, КПД 100-ваттной панели при вертикальной установке не очень хорош — солнечные лучи падают на панель не под прямым углом. В худшем случае (пасмурно, дождь) мощность падает даже до 10Вт. Зимой и летом суммарная получаемая энергия также будет отличаться.

Опыт с отдачей энергии напрямую в сеть оказался неудачным: 500-ваттный инвертер от 45 ватт просто не заработал. В принципе это было ожидаемо, так что инвертор оставлен на будущее до переезда на место с балконом побольше.

В итоге, учитывая решение отказаться от буферных аккумуляторов, единственным рабочим вариантом оказалось использование dc-dc конверторов напрямую: к примеру вот такой конвертер может заряжать любые USB-девайсы, на его выходе уже есть и USB-разъем: Есть модели чуть подороже, они имеют больший максимальный ток и большее число USB-разъемов: Есть мысль также найти dc-dc-конвертер для зарядки ноутбука, их выбор на eBay весьма велик.

Заключение

Данная система имеет экспериментальный характер, но в целом можно сказать что оно работает. Как видно по графику, примерно с 7 утра и до 17 вечера отдаваемая панелями мощность более 30Вт, что в принципе не так уж плохо. В совсем пасмурную погоду результаты разумеется хуже. Об экономической целесообразности речи разумеется не идет — при выработке 40Вт*ч по 7 часов, за неделю будет выработано 2КВт*ч.

Окупаемость в ценах своего региона каждый может прикинуть самостоятельно. Вопрос разумеется не в цене, а в получении опыта, что всегда интересно. Но куда девать энергию, вопрос пока открытый. Использовать 40Вт для зарядки USB-устройств это чересчур избыточно. На eBay есть grid tie инверторы на 300Вт с рабочим напряжением 10.5-28В, однако отзывов по ним мало, а тратить 100$ на тест не хочется.

Если подходящее решение так и не найдется, можно считать что одна 50-ваттная панель является оптимумом для балкона — ею можно заряжать разные гаджеты, избыточность в этом случае минимальна. По крайней мере, уже сейчас все домашние цифровые устройства (телефоны, планшет) переведены на «зеленую энергию» без особых хлопот. Есть мысль все-таки рассмотреть использование буферного LiFePo4 аккумулятора — но вопрос выбора и аккумулятора и контроллера пока открыт.

В дополнение: как подсказали в комментариях, можно использовать свинцовый аккумулятор, например автомобильный. Да, это действительно дешевый и работающий вариант, со 100-ваттной панелью будет достаточно примерно такого контроллера, ценой всего 10-20$ на eBay: Фото Гуглить по словам PWM Solar Charger. Но это решение не совсем экологичное и не совсем интересное, поэтому в плане изучения технологий я его не рассматриваю.

А если кому-то надо например, запитать видеокамеру на даче, то наверное вполне вариант.

Продолжение в следующей части. Краткую видео-версию также можно посмотреть в ролике на .

Источник: https://habr.com/ru/post/403523/

Сравнение моно, поли и аморфных солнечных батарей

При выборе модуля часто задается вопрос: какая солнечная батарея лучше – монокристаллическая или поликристаллическая, а может аморфная? Ведь они самые распространенные в наш век. Чтобы найти ответ, было проведено множество исследований. Рассмотрим, что же показали результаты:

КПД и срок службы

Монокристаллические элементы имеют КПД около 17-22%, сроки их службы не менее 25 лет. Эффективность поликристаллических может достигать 12-18%, служат они тоже не менее 25 лет. КПД аморфных составляет 6-8% и снижается гораздо быстрее кристаллических, работают они не более 10 лет.

Температурный коэффициент

В реальных условиях использования солнечные батареи нагревается, что приводит к снижению номинальной мощности на 15-25%. Средний температурный коэффициент для поли и моно составляет -0,45%, аморфного -0,19%. Это значит, что при повышении температуры на 1°C от стандартных условий кристаллические батареи  будут менее производительными, чем аморфные.

Потеря эффективности

Деградация солнечных монокристаллических и поликристаллических модулей зависит от качества исходных элементов – чем больше в них бора и кислорода, тем быстрее снижается КПД. В поликремниевых пластинах меньше кислорода, в монокремниевых – бора.

Поэтому при равных качествах материала и условий использования особой разницы между степенью деградации тех и других модулей нет, в среднем она составляет около 1% в год. В производстве аморфных батарей используется гидрогенизированный кремний. м водорода обусловлена его более быстрая деградация.

Так, кристаллические деградируют на 20% через 25 лет эксплуатации, аморфные быстрее в 2-3 раза. Однако некачественные модели могут потерять эффективность на 20% уже в первый год использования. Это стоит учесть при покупке.

Стоимость

Тут превосходство полностью на стороне аморфных модулей – их цена ниже, чем кристаллических, из-за более дешевого производства. Второе место занимают поли, моно же самые дорогие.

Размеры и площадь установки

Монокристаллические батареи более компактны. Для создания массива требуемой мощностью понадобится меньшее количество панелей по сравнению с другими видами. Так что при установке они займут немного меньше места. Но прогресс не стоит на месте, и по соотношению мощность/площадь поликристаллические модули уже догоняют моно. Аморфные же пока отстают от них – для их установки понадобится в 2,5 раза больше места.

Светочувствительность

Здесь лидируют аморфно-кремниевые модули. У них лучший коэффициент преобразования солнечной энергии из-за водорода в составе элемента. Поэтому они, по сравнению с кристаллическими, в условиях слабой освещенности работают эффективнее. Моно и поли,  при плохом освещении работают примерно одинаково – значительно реагируют на изменение интенсивности света.

Годовая выработка

В результате тестирования модулей разных производителей было установлено, что монокристаллические за год вырабатывают больше электроэнергии, чем поликристаллические. А те в свою очередь производительнее, чем аморфные, несмотря на то, что последние вырабатывают энергию и при слабой освещенности.

Можно сделать вывод, что солнечные батареи моно и поли имеют небольшие, но важные различия. Хотя mono все-таки эффективнее и отдача от них больше, но poly все равно будут пользоваться большей популярностью. Правда, это зависит от качества продукции. Тем не менее, большинство крупных солнечных электростанций собраны на базе полимодулей. Связано это с тем, что инвесторы смотрят на общую стоимость проекта и сроки окупаемости, а не на максимальную эффективность и долговечность.

Теперь об аморфных батареях. Начнем с преимуществ: метод их изготовления самый простой и малобюджетный, потому что не требуется резка и обработка кремния. Это отражается в невысокой стоимости конечной продукции. Они неприхотливы – их можно установить куда угодно, и не привередливы – пыль и пасмурная погода им не страшны.

Однако у аморфных модулей есть и недостатки, перекрывающие их достоинства: по сравнению с вышеописанными видами, у них самый низкий КПД, они быстро портятся – эффективность снижается на 40% менее чем за 10 лет, и требуют много места для установки.

Источник: http://b-eco.ru/articles/mono_poly_amorphous/

Солнечные батареи на даче

Что делать, если на даче по какой-то причине нет электричества? Можно, конечно, приспособиться и к такой жизни, наслаждаясь проверенными временем технологиями: для освещения пользоваться свечами и керосиновой лампой, для хранения продуктов выкопать погреб, воду носить ведрами и греть на огне, от телевизора отказаться и т.д. Однако такой «отдых» вряд ли будет по-настоящему комфортным: рано или поздно все равно придется искать способы получения электричества с помощью альтернативных источников энергии.

Чаще всего об этом задумываются в следующих случаях:

  • нет возможности подключить дачный или загородный дом к электросети;
  • подключение к электросети стоит неоправданно дорого;
  • на подстанции постоянно происходят аварии, из-за которых подолгу не бывает света;
  • участку выделена слишком малая мощность и ее постоянно не хватает (обычно это случается в садовых товариществах со старыми электросетями);
  • хочется сэкономить на чрезмерно высоких счетах за электричество.

Самый простой и доступный из альтернативных источников энергии – солнечные батареи.

Фотоэлементы на основе кремния, соединенные в электрическую цепь для преобразования энергии солнечного света в электроэнергию, были изобретены в США и начали использоваться на американских и советских космических спутниках еще в 1958 году.

В наше время на них работает портативная техника (калькуляторы, термометры, фонарики), космические аппараты, электромобили и яхты, даже разрабатывается самолет, который будет летать за счет энергии, полученной от солнечных батарей.

Во многих странах созданы крупные солнечные электростанции, а правительство Франции планирует уложить 1 000 км автодорог со встроенными солнечными панелями, чтобы каждый километр такого покрытия обеспечивал электроэнергией 5 000 человек (без учета отопления).

Солнечные батареи нашли применение даже в медицине: в Южной Корее крошечные фотоэлементы вживляют в кожу пациента для бесперебойной работы имплантированных приборов, например, кардиостимулятора.

Такой длительный опыт и широкое применение солнечных батарей свидетельствует о надежности, экономичности и высокой эффективности этой технологии.

В этой статье я расскажу о собственном опыте использования солнечных батарей на даче. Прежде всего необходимо заметить, что для обеспечения потребностей небольшого дачного дома в электроэнергии требуется собрать целую мини-электростанцию, в которую, кроме самих солнечных батарей, входят аккумуляторы для накопления заряда, контроллер для управления системой и инвертор для преобразования постоянного тока в переменный.

По теме:
Может ли дача стать домом?

:

Солнечные батареи для дачи

На российском рынке представлены солнечные батареи (солнечные панели) отечественного, европейского и китайского производства. На нашей даче установлены отечественные солнечные панели — мы купили их непосредственно у производителя в Зеленограде.

В Москве работает несколько специализированных фирм, которые предлагают как отдельные элементы для самостоятельной установки солнечной мини-электростанции, так и полный комплект необходимого оборудования с доставкой и установкой под ключ.

Специалисты этих компаний дают профессиональные советы и консультации, просчитывают для каждого клиента необходимую мощность и состав системы.

Солнечные батареи имеют неограниченный срок службы. Они вырабатывают постоянный ток напряжением 12В. В зависимости от размера панели бывают разной мощности. Чтобы собрать автономную солнечную мини-электростанцию, нужно приобрести несколько солнечных батарей.

Точное количество батарей (точнее, их необходимая мощность) высчитывается, исходя из необходимого вам потенциального расхода электроэнергии. В летние солнечные дни эффективность работы панелей максимальная. В пасмурную погоду панели тоже вырабатывают электроэнергию, но в меньшем количестве.

Это надо учитывать при расчете мощности системы, если вы планируете пользоваться ей не только в летнее время, но и зимой.

Аккумуляторы глубокого разряда

Электрическая энергия, которую вырабатывают солнечные панели, накапливается в аккумуляторах.

Для эффективной работы системы лучше всего использовать специальные гелевые аккумуляторы глубокого разряда, которые не требуют специального обслуживания, герметичны и безопасны при установке внутри дома.

Для небольшого дачного домика с минимальным потреблением электроэнергии требуется как минимум 3-4 аккумулятора емкостью по 100-120 А*ч каждый. Они надежны, долговечны и выдерживают много циклов заряда и глубокого разряда.

Контроллер заряда аккумуляторов

Между солнечными панелями, вырабатывающими электроэнергию, и аккумуляторными батареями, которые эту энергию накапливают, устанавливается контроллер. Контроллеры различаются по техническим характеристикам и стоимости.

Как ни странно, это самый главный элемент управления солнечной мини-электростанцией: контроллер защищает аккумуляторы от полного разряда и от перезаряда, которые для них очень опасны. В случае недопустимо низкого разряда аккумуляторов контроллер отключает нагрузку.

В том случае, когда аккумуляторы полностью заряжены, контроллер не дает энергии от солнечных батарей поступать в аккумуляторы.

Инвертор

Солнечные батареи вырабатывают постоянный ток напряжением 12В, в то время как большая часть электроприборов работает от переменного тока напряжением 220В.

Поэтому в систему солнечной мини-электростанции включают инвертор, который преобразует постоянный ток 12В в переменный ток 220В. Лучше всего использовать более дорогие инверторы, которые выдают ток так называемой чистой синусоиды («чистый синус»).

Более дешевые инверторы, вырабатывающие ток модифицированной синусоиды, для некоторой техники могут не подойти.

По теме:
Украшаем забор на даче: 30 идей

Потребители электроэнергии

Как правило, во всех солнечных мини-электростанциях устанавливаются отдельные розетки для приборов (потребителей), работающих от постоянного (12В) и переменного тока (220В).

От постоянного тока могут работать энергосберегающие осветительные приборы, водяные насосы, холодильники и даже телевизоры. Вся остальная техника требует переменного тока напряжением 220В.

По возможности выбирайте оборудование, которое потребляет как можно меньше электроэнергии, – на современном рынке бытовой техники существует огромный выбор таких энергосберегающих устройств.

Собственный опыт и впечатления

На нашей даче небольшая система из солнечных батарей успешно проработала несколько лет, пока не появилась возможность подключиться к общей электросети. Конечно же, когда после установки солнечных батарей мы смогли включить нормальный свет, холодильник, насос для воды, антенну и телевизор, это было просто чудо.

Однако за системой необходимо постоянно следить и поддерживать ее в правильном, работоспособном состоянии. Например, контакты на месте соединения проводов от солнечных панелей с контроллером заряда периодически окисляются и перестают качественно проводить заряд. Поэтому их необходимо периодически зачищать и подключать заново.

Если этого не делать, то заряд от батарей поступает в аккумуляторы не полностью, мини-электростанция накапливает меньший запас электричества, чем рассчитывалось, и при включении обычной (рассчитанной для нее) нагрузки уже не справляется: скорость разряда становится быстрее скорости заряда.

Кроме того, если система бюджетная и не очень мощная, необходимо очень четко понимать, какие электроприборы можно включать одновременно, а какие – нет.

Пока у нас с мужем была возможность часто ездить на дачу и следить за солнечными батареями, все хорошо работало и никаких проблем не возникало. Но когда обязанность поддерживать систему в рабочем состоянии легла на плечи наших пожилых родителей, начались проблемы с ее функционированием, потому что у них не хватало знаний и опыта. В итоге было принято решение воспользоваться появившейся возможностью подключиться к обычной электросети, чтобы не нагружать их лишними заботами.

Основываясь на нашем опыте, я могу сказать, что собрать достаточно бюджетную автономную мини-электростанцию на солнечных батареях вполне реально. И она действительно будет надежно и эффективно работать, обеспечивая основные потребности небольшого дачного домика. Однако для поддержания ее в хорошем состоянии нужно тщательно изучить вопрос и периодически проводить ее диагностику и профилактику.

:

Источник: https://kvartblog.ru/blog/solnechnye-batarei-na-dache/

Какие солнечные панели лучше в пасмурную погоду

Популярность солнечных батарей неуклонно растет из года в год. Во многом это обусловлено тем, что они стали доступнее по цене, немалую роль сыграла и реализация программы “зеленого тарифа” в разных странах мира. Это значит, что получаемое электричество от солнечных батарей можно продавать государству по выгодному тарифу.

Солнечные электростанции работают, требуя обслуживания два раза в год, заключающегося в очистке защитной поверхности от загрязнений. Основные условия для монтажа оборудования требуют наличия хорошего освещения и высокой инсоляции светового потока. Но при выборе солнечных панелей следует учитывать и тот факт, будут ли они эксплуатироваться зимой, так как при пасмурной погоде условия для нормальной работы ухудшаются и эффективность падает.

Как работают солнечные батареи при пасмурной погоде

Наивысшей эффективности от них можно добиться в хорошую солнечную погоду при температуре нагрева фотоэлектрических элементов не более 25 градусов. Когда небо затянуто тучами, эффективность работы солнечных батарей значительно снижается, но производительность не прекращается.

В самую пасмурную погоду выходная мощность составляет всего 5-20% от максимально возможной. Обусловлено это тем, что тучи закрывают доступ солнечным лучам к панелям, оставляя только рассеянный свет.

В таких условиях солнечные электростанции работают без перебоев, но с эффективностью, указанной выше.

Ошибочно мнение, что панели с поворотным механизмом неэффективны в пасмурную погоду. На самом деле, даже при отсутствии солнечных лучей, поворот фотоэлектрических элементов в сторону солнца, скрытого тучами, имеет значение.

Это обусловлено тем, что с его стороны даже рассеянный свет имеет более высокую инсоляцию. А потому, для повышения эффективности солнечной электростанции в пасмурную погоду, рекомендуется установка панелей, поворачивающихся вслед за движением солнца.

Также существуют другие критерии выбора, рассмотрим их ниже.

Какие панели выбрать

Исходя из вышесказанного, чем выше КПД батарей, тем меньше будет снижаться выходная мощность при понижении активности светового потока.

Поэтому для работы в пасмурную погоду не подходят панели с низким уровнем КПД, так как отсутствие солнечных лучей снижает выходную мощность настолько, что их эксплуатация становится нерациональной.

К таким панелям относятся аморфные и поликристаллические модели. Поэтому предпочтение следует отдать солнечным батареям на основе кремниевых монокристаллов.

При пасмурной погоде их производительность выше, соответственно, увеличивается рациональность эксплуатации. Они лучше поглощают рассеянный свет, проникающий через облака. Такой эффект достигается за счет того, что монокристаллические фотоэлектрические элементы изготовлены с использованием высокоочищенного кремния. Степень его очистки составляет 99,99 %, в сравнении с поликристаллом.

Новшества и разработки, которые повысят эффективность панелей в будущем

Новинкой в области солнечной энергетики станут панели со слоем графена на защитной поверхности. Особенность такого покрытия заключается в том, что батарея обретает способность получать энергию от попадания капель дождя на ее поверхность.

Это частично компенсирует потери энергии от отсутствия солнечных лучей. Также в скором времени ожидается появление на рынке солнечных панелей, способных генерировать электричество не только с ультрафиолетового излучения солнца, но и с инфракрасного.

Это позволит одинаково эффективно работать в любое время года, при любом освещении.

Таким образом, учитывая недоступность в настоящий момент панелей, восприимчивых к инфракрасному излучению и со слоем графена, для эксплуатации круглый год рекомендуется купить солнечную панель с кремневыми поликристаллами. Это гарантирует стабильную мощность в солнечные дни и наименьшее ее снижение при отсутствии солнечных лучей.

еще не добавлены

Источник: https://elektro.in.ua/86-kakie-solnechnye-paneli-luchshe-v-pasmurnuyu-pogodu.html

Как работает солнечная батарея и и её устройство

Солнечные батареи стали популярным альтернативным источником электроэнергии. Преобразующие устройства позволяют заметно ее удешевить, обеспечивают бесперебойное снабжение ресурсом объектов, поэтому активно применяются в частных домовладениях, фермерских хозяйствах, коммерческих организациях и в промышленности.

Мы рассматриваем уникальную разработку человечества, и, конечно, хотелось бы узнать историю. Началось все в далеком 1839 г. Тогда Александр Беккерель открыл возможность преобразования света солнца в электроэнергию. Ученый представил первый прототип современной солнечной батареи. К сожалению, ввиду несовершенства устройство отличалось низким КПД – 1%. Но труды над развитием и совершенствованием идеи продолжились.

В 1873 г. ученый Чарльз Фриттс выявил чувствительность селена к свету. Через четыре года удалось отметить, что вещество под действием лучей солнца вырабатывает электрический ток. Еще через три года создали первый солнечный элемент. Для изготовления применили покрытый золотом селен. Производительность также составила 1%.

Несмотря на малую производительность, Фриттс считал свою разработку эволюционной. Ученый настаивал на том, что энергию солнца целесообразно использовать как способ получения электричества. Фриттс предсказал, что со временем солнечные батареи заменят электростанции.

В 1905 г. А. Эйнштейн объяснил суть фотоэффекта. После обоснованного разъяснения появились надежды на изготовление солнечных батарей с производительностью, значительно превышающей ранее представленные показатели. Но прогресс не оправдал ожиданий.

Первый прорыв в разработках состоялся в 1954 г. Тогда Гордон Пирсон, Дэррил Чапин и Кэл Фуллер изготовили кремниевый солнечный элемент. Производительность составила 4%. Кремний оказался лучше селена по уровню продуктивности. После производительность изделия повысили до 15%. 

Использовать солнечные батареи начали в сельских районах, где были проблемы с инженерными коммуникациями. Сегодня разработка получила масштабное распространение, успешно применяется в развитых странах мира с целью получения дешевой электроэнергии.

Основные термины

Чтобы разбираться в теме было проще, внимательно изучите используемые в данной области термины. Они помогут улучшить понимание материала, упростить выбор оборудования при планировании покупки. К основным терминам отнесем:

  • солнечная энергетика – направление альтернативной энергетики, базирующееся на применении лучей солнца для получения энергии;
  • солнечная батарея – главный элемент. Это конструкция из последовательно или параллельно соединенных модулей;
  • солнечные модули – фотоэлектрические элементы, объединенные в блок;
  • фотоэлемент – главный компонент, используемый для создания батарей. Он преобразует энергию фотонов в электрическую;
  • монтажная шина – плоский луженый проводник, изготовленный из меди, используемый для соединения фотоэлектрических элементов методом спаивания;
  • ПЭТ или полиэтилентерефталатная пленка. Используется для защиты тыльной стороны фотомодуля;
  • пикочасы – время, за которое модуль способен принять освещенность, равную 1000 Вт/м²;
  • монокристаллический кремний – кремний, производимый методом Чохральского, цилиндрические слитки;
  • поликристаллический кремний – кремний, производимый методом направленной кристаллизации, прямоугольные блоки;
  • инсоляция – освещенность поверхности. Измеряется в кВтч/м².

Это основные термины, касающиеся рассматриваемых устройств. Частному потребителю пригодится половина наименований, ведь подбором и установкой батарей занимаются мастера, работающие в этой области.

Устройство 

Сама солнечная панель состоит из соединенных между собой фотоэлементов, бывает рамочной и безрамной. Рамы изготавливают из алюминия. В основе модулей, расположенных на металлической основе, лежит два вида кремния, отличающихся физическими свойствами. На этих пластинах располагаются металлические ребра жесткости, сверху – прозрачное стекло. По сути, устройство солнечной батареи не представляет собой слишком сложной для понимания темы.

Одна панель не даст никакого результата без дополнительных комплектующих:

  • аккумулятор – накапливает преобразованную фотоэлементами энергию. АКБ необходима для обеспечения постоянного энергоснабжения объекта даже в пасмурную погоду и холодное время года;
  • контроллер заряда – распределяет потоки электрической энергии, поддерживает стабильное напряжение на выходе;
  • инвертор-преобразователь – преобразовывает постоянный ток, получаемый от установки, в переменный;
  • стабилизатор напряжения – поддерживает оптимальные показатели напряжения в системе.

Чтобы солнечные панели работали стабильно и на максимуме возможностей, компоненты системы должны быть подобраны правильно, соответствовать характеристикам друг друга. Поэтому выбор и монтаж рекомендуется доверять лицам, имеющим в этой области немалый опыт.

Виды кристаллов фотоэлементов

Выше мы говорили о том, что кремний бывает монокристаллическим и поликристаллическим. Рассмотрим отличия внимательнее:

  • монокристаллические пластины. Отличаются высоким КПД – 20-22% и дороговизной, обусловленной сложностью производственного процесса. Кристаллы имеют форму квадратов со срезанными углами;
  • поликристаллические. Кристаллы имеют прямоугольную форму, получаются в результате постепенного охлаждения расплавленного кремния. Простое производство позволяет устанавливать на материал невысокую цену, но КПД 15%.

Этот момент следует учитывать, планируя приобретение солнечной панели.

Принцип работы

Рассматривая принцип работы солнечной батареи, отметим, что в конструкции модулей предусмотрено два типа полупроводников:

  • n-слой – с лишними электронами;
  • p-слой – с недостаточным количеством электронов.

При попадании лучей солнца на первый слой электроны покидают атомы и перемещаются во второй слой, где для них есть свободные места. Таким образом обеспечивается движение электронов по замкнутому кругу, сформированному фотоэлементами и аккумулятором. Пока идет этот процесс, АКБ набирает заряд.

Виды солнечных батарей

На первом месте по степени распространения и уровню популярности стоят кремниевые моно- и поликристаллические панели. Они характеризуются КПД в пределах 15-20%, доступны по цене, представлены на рынке в широком ассортименте. Если сравнить по эксплуатационным характеристикам, получим следующее:

  • монокристаллические: надежнее, работают стабильно, окупаются за 2 года. Более совершенны, но дороже поликристаллических;
  • поликристаллические: менее стабильны, проще в производстве, дешевле, окупаются за 3 года. 

Вышеуказанные показатели КПД нельзя назвать пределом совершенства, поэтому разработчики продолжают трудиться над поиском и воплощением в реальность новых решений. Так у кремниевых батарей появился ряд конкурентов.

Тонкопленочные панели представлены тремя видами неорганических пленочных солнечных элементов:

  • кремниевые пленки на базе аморфного кремния (a-Si). КПД – 10%. Светопоглощение хорошее, устройства функционируют на прием лучей даже в пасмурную погоду. Эластичны, долговечны; 
  • пленки из теллурида кадмия (CdTe). КПД 10-11%. Материал характеризуется хорошим светопоглощением. Есть информация о ядовитости вещества, но исследования показывают, что количество частиц, которое попадает в атмосферу, абсолютно безопасно для человека и окружающей среды; 
  • пленки селенида меди-индия-галлия (CuInGaSe2, или CIGS). Производительность – 12-13%. Индий применяют в производстве жидкокристаллических мониторов, поэтому и заменяют часто галлием.

Полимерные солнечные батареи появились на рынке недавно, как альтернатива существующим вариантам. В качестве проводников производители используют полифенилен, фуллерены, фталоцианин меди. Пленка получается тонкой – 100 нм, КПД всего 5%. Но даже при таких показателях полимерные панели пользуются спросом, обладая рядом преимуществ:

  • доступная цена;
  • исключение выделения вредных веществ;
  • широкое распространение.

Для небольших частных домовладений это вполне удобный вариант.

Многослойные, многопереходные или тандемные модели: ячейки включают разные материалы, образующие несколько p-n переходов. Ценятся панели тем, что могут улавливать лучи разного спектра и длины волн.

Для получения возможности преобразования всего солнечного спектра используют специальные призмы, разделяющие свет солнца. На рынке такие модели появились сравнительно недавно, до этого использовались исключительно в космосе. После поступления в свободную продажу объемы реализации приятно удивили.

Но оправдали ли панели приобретение? Из заявленных показателей КПД для разных конструкций отличается:

  • с двухслойными ячейками – 42%;
  • с трехслойными – 49%;
  • с бесконечным количеством слоев – 68%.

Эти показатели теоретические. Зная, как работает солнечная батарея в теории, исследователи на определенном этапе разочаровались. Практика показала, что средний КПД многопереходных панелей составляет 30%. Исследования проводились при несфокусированном свете солнца.

Результат оказался слишком малым, что свидетельствовало о невозможности окупить дорогой производственный процесс. Тогда и начали применять концентраторы для фокусировки света в 500-1000 раз. Концентратор в виде линзы Френеля и параболического зеркала получает свет с площади в 1000 раз больше площади ячейки.

КПД увеличивается до 40%.

Самые крупные производители 

Сегодня удается выделить ряд фирм, являющихся крупнейшими производителями и поставщиками солнечных батарей:

  • Suntech – китайская компания. Занимается производством солнечных панелей высокого класса качества. Работает с 2001 года. Имеет представительства во многих развитых странах мира. Организация ведет полный цикл производства, начиная с получения кремниевых кристаллов, заканчивая сборкой преобразовывающих конструкций. Производственные мощности находятся в Китае, Японии, Германии, США; 
  • Yingli – крупная китайская корпорация, занимающаяся производством фотомодулей. Работает с 1998 года. С 2003 выпускает панели мощностью до 2 МВт. В 2012 и 2013 компания стала лидером по объемам производства в своей области;
  • Trina Solar – входит в число лидеров по производству преобразовательных панелей. Главный офис и завод находятся в Китае. Работает компания с 1997 г. Выпускает продукцию, соответствующую национальным и международным стандартам. Кроме Китая заводы фирмы располагаются в Таиланде и Вьетнаме. В 2017 году руководство анонсировало строительство производственных мощностей в Индии, но позже приостановило реализацию проекта; 
  • First Solar – американская компания, основанная в 1990 году. Занимается производством панелей и обеспечением профильных заводов специальным оборудованием, предоставляет услуги по обслуживанию производственных мощностей, участвует в переработке исчерпавших ресурс модулей;

Источник: https://uaenergy.com.ua/post/32473/kak-rabotayut-solnechnye-batarei-vnutrennee-ustroystvo-istoriya-i-raznovidnosti

Эффективность солнечных батарей в Украине в пасмурную погоду

В Украине, как и во всем мире, солнечная энергетика набирает все большую популярность. И не только на больших предприятиях, но и в обычных жилых домах. Однако некоторые сомневаются в эффективности солнечных батарей в пасмурную погоду, поэтому не рискуют переходить на автономное электроснабжение.

В этой статье мы подробно разберемся, какова эффективность солнечных батарей в Украине при разной погоде и достаточно ли они генерируют энергии в пасмурные дни.

Особенности и эффективность работы разных типов солнечных панелей в пасмурную погоду

Важнейшим фактором влияния на эффективность любой СЭС является тип используемого в солнечных ячейках полупроводника. Выбор его зависит от расположения и климата, в котором будет установлена электростанция. Связано это с тем, что разные полупроводниковые материалы выдают максимум генерации при поглощении электромагнитных волн разной длины – ультрафиолетового, видимого или инфракрасного света.

Самые распространенные солнечные батареи – кремниевые. Но спектр максимальной генерации кремния очень узкий. Его высокий КПД, в идеальных условиях равный 18-22%, даже при незначительном снижении яркости излучения, затенении хотя бы 10% панелей или рассеивании света облаками падает в 15-20 раз.

Тонкопленочные батареи, использующие в качестве полупроводников редкоземельные элементы, обладают примерно на 25% меньшим КПД при ярком освещении. Но при снижении солнечной инсоляции эффективность таких солнечных панелей в 1,5 раза выше, чем кремниевых. В результате на территориях со сравнительно невысоким количеством ярких солнечных дней среднегодовая выработка пленок выше, чем классических SI-модулей.

Влияние разных световых условий на эффективность солнечных батарей.

Освещенность % солнца
Яркое солнце и идеальный угол по расположению к лучам 100
Легкая дымка 60-80
Облачный день 20-30
За оконным стеклом в 1 слой под идеальным углом по расположению к лучам 90
За оконным стеклом в 1 слой под углом 45° к лучам 65
За оконным стеклом в 2 слоя под идеальным углом по расположению к лучам 85
Искусственное освещение в помещении 0.2-1.4

Влияние на КПД наличия облаков и снежного покрова в ясный зимний день

Гелиомодуль преобразовывает солнечный свет в постоянный ток (DC) и после этого через инвертор выходит переменный ток (AC), который подпитывает все бытовые приборы и технику в доме. Чтобы устройства работали с оптимальной эффективностью, им нужен достаточно ясный день, когда лучи напрямую достигают панелей.

Эффективность солнечной батареи зимой в ясный или пасмурный день разная. Летом же в Украине практически всегда солнечно. В пасмурный день эффективность работы солнечных панелей составляет примерно 30-35% их нормальной выработки электроэнергии. Этого может быть достаточно для питания бытовых приборов в течение дня.

Если вы внимательно следите за выходной мощностью своих панелей, то, возможно, заметили странное явление: в облачный день генерация энергии может быть активнее, чем в солнечную погоду.

Этот эффект называется «край облака», когда солнце проходит над внешним краем облака, увеличивая количество солнечного света.Интенсивный свет заставляет батареи временно увеличить выходную мощность, что может помочь сбалансировать потери энергии при сильной облачности.

Аналогичная эффективность солнечных панелей возникает, когда яркий свет отражается от снега или воды.

К тому же в слишком жаркий, хотя и ясный день, выход работы фотомодулей может уменьшиться на 10-25%. Дело в том, что выходная мощность многих типов гелиопанелей снижается, если сама панель нагревается свыше 25°C. Вот почему многие производители на упаковке указывают выходную мощность с температурой панели 25degC.

Краткие выводы о степени эффективности солнечных батарей в зависимости от погоды

  1. Варианты СЭС на моно- и поликристаллическом кремнии наиболее эффективны при солнечной погоде. Они хорошо поглощают и перерабатывают энергию, но в пасмурные дни их выработка резко падает.
  2. Тонкопленочные панели работают лучше в пасмурных условиях, чем традиционные ячейки с кристаллическим кремнием.

    Соединения редкоземельных элементов эффективно поглощают более широкий спектр света, чем кристаллические. В первую очередь – «тепловые», или инфракрасные световые волны, которые отличаются от видимого нашим глазам излучения солнца.

    Этот поток излучения имеет другую длину волны, присутствует и в пасмурные дни, хорошо поглощается тонкопленочными солнечными батареями, и потому их эффективность в целом выше.

По этой причине почти на всей территории Украины предпочтительнее устанавливать солнечные панели повышенной эффективности на теллуриде кадмия или сульфидах индия, которые при неблагоприятной погоде генерируют большее количество энергии. Зимой, когда солнце стоит низко над горизонтом, или в дни, когда оно прячется за облаками, эта разница особо заметна.

Какие солнечные панели выбрать?

Выбирая солнечные батареи для дома, не забывайте, что их эффективность зависит от погоды и учитывайте общие плюсы и минусы. Независимо от того, какой тип панели будет установлен, вы должны получить максимально возможную отдачу от инвестиций и экономию на счетах за электроэнергию.

Тем не менее, есть целый ряд дополнительных нюансов, которые следует учитывать при выборе модулей:

  • тонкопленочные гибриды на 20% дешевле, чем кристаллические;
  • тонкие пленки выглядят более эстетично;
  • они в несколько раз легче классических кремниевых модулей;
  • они гибкие либо полужесткие, что дает больше свободы в монтаже;
  • КПД самых современных тонкопленочных систем достигает 17-20%, что приближает их к эффективности кристаллических панелей;
  • при одинаковой мощности тонкопленочные модули на базе редкоземельных элементов вида сульфидов германия, индия и меди стоят в два раза дороже, чем на основе теллурида кадмия от компании First Solar (США), чью продукцию в Украине реализует и обслуживает официальный дилер американцев, компания Green Tech Trade.

Важно! В настоящее время большинство крупных станций в Украине все чаще отдают предпочтение пленкам, а не обычным кристаллическим элементам. Эффективность кремниевых солнечных батарей в пасмурную погоду составляет 15-25% от полной мощности. И потому в таких климатических условиях тонкие пленки впереди классики, генерируя за год на широте Украины 1,3 МВт*ч с каждого киловатта мощности, в то время как кремниевые – в среднем 1,1 МВт*ч.

Источник: https://greentechtrade.com.ua/ru/solnechnye-batarey-v-pasmurnuyu-pogodu/

Солнечные батареи для дома и дачи, в пасмурную погоду и ночью

Многие мечтают о доме или хотя бы маленькой даче за городом. Но некоторые отказываются от возможного слияния с природой из-за отсутствия поблизости электрических коммуникаций. Выход можно найти из любой ситуации, и здесь «палочкой-выручалочкой» становятся батареи для дачи, потребляющие энергию солнца.

Энергия, производимая солнечными батареями, напрямую зависит от количества солнечного света, попадающего на панель. Максимум солнечных лучей – в ясный, погожий день.

Соответственно, и количество вырабатываемой энергии самое большое. В пасмурную погоду, когда солнце закрывают облака и тучи, продуктивность батарей понижается. Но не все так безрадостно!

Автономное существование

Солнечные панели уже не являются диковинкой. Их активно применяют для обустройства жизни за городом. Уже не имеет значения, проходят рядом линии электропередач или нет. Ультрафиолетовые лучи – это возможность создать собственную автономию семейного масштаба.

Схема питания дома от солнечных батарей

Приобретя солнечные панели и установив их на крыше особняка или карнизе, можно обеспечить себе вполне комфортную жизнь. Если выбрать батареи для частного дома достаточной мощности, то с помощью бесплатного источника энергии можно жить цивилизованно даже на значительном расстоянии от города.

Приобретаемые возможности:

  1. Панелей хватает, чтобы обеспечить одновременное питание всем электрическим устройствам, в том числе и крупным бытовым приборам (холодильнику, печи, стиральной машине, телевизору), а не только утюгам и фенам;
  2. Благодаря солнечной энергии бесперебойно будут функционировать спутниковые антенны и интернет;
  3. Не возникнет проблем при выполнении строительных и ремонтных работ;
  4. Энергия солнца обеспечит работу насосов, установленных в канализационных системах, поливных устройствах и водоснабжении.

Солнечные батареи для дачи или загородного дома не дадут замерзнуть зимой. Отопительные системы отлично функционируют на природном источнике питания, давая высокую теплоотдачу при минимальных денежных расходах.

Как построить теплицу своими руками

Комплектующие

Чтобы перевести свое жилище на автономное солнечное питание, приобретать придется целый комплекс устройств. Только так система сможет функционировать.

Комплектующие автономной системы:

  • солнечные батареи для частного дома – это аккумуляторные панели-модули. Именно они трансформируют энергию света в электричество;
  • преобразованная энергия накапливается в аккумуляторных батареях;
  • чтобы обеспечить стабильность работы модулей и АКБ, понадобится контроллер заряда.
  • еще необходимо адаптировать электроэнергию, аккумулируемую батареями, под стандартное напряжение в 220В, от которого работают бытовые приборы и техника. Называют это устройство инвертором напряжения.

Устройство солнечной батареи

Вложив средства в солнечную станцию, обеспечить себя комфортом можно на 25 лет: такой срок эксплуатации модулей. При этом пасмурная погода никакого влияния на работу системы не оказывает. Аккумуляторные батареи достаточно долго держат накопленный заряд.

Эффективность солнечных батарей в пасмурную погоду

Современные батареи успешно поглощают не только прямые солнечные лучи, но и рассеянный свет, которого вполне достаточно даже в хмурую погоду. Поэтому процесс преобразования солнечного света продолжается и при облачности. Разумеется, эффективность батареи несколько понизиться, но цифровой показатель не так уж критичен – от 25% до 50%.

Более того, влияние облачности на солнечную батарею может оказаться неожиданно позитивным.

Во-первых, панели будут генерировать энергию, полученную от прямого солнца. А во-вторых, в момент, когда солнечные лучи пробиваются между облаками, батареи, помимо прямого света, дополнительно получают и свет, отражающийся от облаков.

Выходит, что в некоторые пасмурные дни панели получают даже больше солнечного света, чем в погожий день. Все зависит от степени «пасмурности».

От чего зависит эффективность солнечных батарей

Эффективность работы панелей в ненастную погоду во многом зависит от материала, из которого они изготовлены.

Батареи из аморфного кремния лучше поглощают рассеянный свет, чем монокристаллические и поликристаллические панели. Поэтому для регионов с преобладанием пасмурных дней целесообразнее использовать именно кремниевые панели.

Кроме того, на результативность солнечной батареи влияет фактура поверхности – панели из рифленого стекла успешнее улавливает боковой свет. А оптимальным является волнообразный рельеф, с ярко выраженными выступами и впадинами. Рельефная поверхность способна увеличить производительность батареи на 5-10%.

«Работоспособность» солнечных батарей ночью

В ночное время солнечные панели не работают! Солнца нет в принципе, а значит батареям просто не из чего брать «топливо» для преобразования в электроэнергию. Спасти ситуацию могут аккумуляторы, которые накапливают энергию, получаемую днем, а ночью – отдают ее.

А чтобы аккумуляторы имели достаточный запас энергии, важно, чтобы днем панели получили максимально возможное количество солнечного света.

Для этого необходимо подыскать правильное место для размещения солнечных батарей – панели ни в коем случае не должны быть в тени. Все, что может дать хотя бы незначительную и непродолжительную тень, должно быть удалено. Если это невозможно, значит придется подыскивать другое место для установки панелей. А еще обязательно поддерживать чистоту поверхности батарей. Скопившиеся грязь и пыль – практически непреодолимая преграда для солнечных лучей.

Каковы перспективы

Прогресс не стоит на месте, в разных уголках планеты ведутся научные изыскания, призванные «заставить» работать солнечные батареи даже ночью. И подвижки есть. Так, в технологическом институте Массачусетса ученые решают проблему сохранения и возобновления энергии, полученной днем.

В Китае также занимаются разработкой нового типа солнечных батарей, способных не терять эффективность в пасмурную погоду и продолжать генерировать энергию ночью. Изобретатели сосредоточили внимание на невидимом глазу и обычно неиспользуемом инфракрасном спектре солнечного излучения.

Возможно, в самое ближайшее время проблема будет решена и человечество обзаведется бесперебойно работающими солнечными батареями.

Источник: https://sn-zoo.ru/solnechnye-batarei-dlya-doma-i-dachi.html

ЭТО ИНТЕРЕСНО:  Кто отвечает за отопление в многоквартирном доме
Понравилась статья? Поделиться с друзьями:
Дома тепло
Конвектор электрический настенный с терморегулятором какой выбрать

Закрыть